Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38.001
Filter
1.
Environ Monit Assess ; 196(5): 420, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570413

ABSTRACT

Monitoring and protecting freshwater habitats are paramount for a sustainable water management perspective. This study investigated potentially toxic elements (PTEs) in the potamic water of the Anday Stream Basin (Türkiye), Black Sea Region, for a hydrological year (from May 2020 to April 2021). Among PTEs, the highest average values were recorded for sodium (Na) at 41.3 mg/L and the lowest for mercury (Hg) at 0.009 µg/L and noted under quality guidelines. The stream was found to be at the level of "Low Heavy Metal Pollution" and "Low Contamination" based on the ecotoxicological risk indices. The highest calculated hazard quotient (HQ) value of 1.21E-02 for Cd was noted in the children via the dermal pathway and the lowest of 6.91E-06 for Fe in adults via the ingestion pathway. Results revealed a higher hazard index (HI) value of 1.50E-02 for Cd to children and the lowest of 1.98E-05 for Fe to adults. As a result of applying agricultural risk indices, the stream showed sodium adsorption ratio values less than 6 and was found to be "Excellent" for agriculture. However, the sodium percentage values were less than 20 and found "Permissible" and the magnesium hazard > 50 and noted as "Unsuitable" for agriculture. Statistical analysis revealed that natural factors mainly attributed to PTE contamination of the Anday Stream Basin.


Subject(s)
Mercury , Metals, Heavy , Child , Adult , Humans , Environmental Monitoring/methods , Water/analysis , Rivers , Black Sea , Turkey , Metals, Heavy/analysis , Mercury/analysis , Risk Assessment , Sodium/analysis , Cadmium/analysis
2.
Environ Monit Assess ; 196(5): 417, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570421

ABSTRACT

Heavy metals can have significant impacts on human health due to their toxicity and potential to accumulate in the body over time. Some heavy metals, such as lead, cadmium, mercury, and arsenic, are particularly harmful even at low concentrations. The estimation of hazards of vegetable intake to human health as well as explore the of heavy metals accumulation in different vegetables (cucumbers, tomato, eggplant, and bell peppers) collected in Erbil city from different source locally and imported from nearby country are conducted. The heavy metals concentration (cooper, zinc, lead and cadmium) was measured and analyzed by inductively coupled plasma-optical emission spectrophotometry. The maximum concentration of Pb was 27.95 mg/kg and the minimum was 6.49 mg/kg; for Cd, the concentration was 1.43 and 0.99 mg/kg, 74.94 and 5.14 mg/kg for Zn; and for Cu, the result was 56.25 and 8.2 mg/kg for the maximum and minimum, which they are within limits described by Food Agricultural Organization, but more than health limits and health risks calculated by mean of hazard quotient (HQ) techniques for Cu and Pb which they are more than 1. The local sample that collected in Erbil city show less concentration of heavy metals and low HQ in comparison with imported samples. The carcinogenic risk study shows elevated risk of accumulative consuming of edible part of those plant which they exceed the permissible limit that is 10-6.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Vegetables , Cadmium/analysis , Iraq , Lead , Environmental Monitoring , Metals, Heavy/analysis , Risk Assessment , Soil Pollutants/analysis
3.
Sci Rep ; 14(1): 8023, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580805

ABSTRACT

Toxic metals are vital risk factors affecting serum ion balance; however, the effect of their co-exposure on serum ions and the underlying mechanism remain unclear. We assessed the correlations of single metal and mixed metals with serum ion levels, and the mediating effects of mineralocorticoids by investigating toxic metal concentrations in the blood, as well as the levels of representative mineralocorticoids, such as deoxycorticosterone (DOC), and serum ions in 471 participants from the Dongdagou-Xinglong cohort. In the single-exposure model, sodium and chloride levels were positively correlated with arsenic, selenium, cadmium, and lead levels and negatively correlated with zinc levels, whereas potassium and iron levels and the anion gap were positively correlated with zinc levels and negatively correlated with selenium, cadmium and lead levels (all P < 0.05). Similar results were obtained in the mixed exposure models considering all metals, and the major contributions of cadmium, lead, arsenic, and selenium were highlighted. Significant dose-response relationships were detected between levels of serum DOC and toxic metals and serum ions. Mediation analysis showed that serum DOC partially mediated the relationship of metals (especially mixed metals) with serum iron and anion gap by 8.3% and 8.6%, respectively. These findings suggest that single and mixed metal exposure interferes with the homeostasis of serum mineralocorticoids, which is also related to altered serum ion levels. Furthermore, serum DOC may remarkably affect toxic metal-related serum ion disturbances, providing clues for further study of health risks associated with these toxic metals.


Subject(s)
Arsenic , Metals, Heavy , Selenium , Humans , Lead/toxicity , Arsenic/toxicity , Cadmium/toxicity , Mediation Analysis , Mineralocorticoids , Heavy Metal Poisoning , Zinc , Iron , Ions , China , Metals, Heavy/toxicity
4.
Ecotoxicol Environ Saf ; 275: 116275, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38564858

ABSTRACT

Compound pollution with cadmium (Cd) and zinc (Zn) is common in nature. The effects of compounded Cd and Zn on the growth and development of Iris pseudacorus in the environment and the plant's potential to remediate heavy metals in the environment remain unclear. In this study, the effects of single and combined Cd and Zn stress on I. pseudacorus growth and the enrichment of heavy metals in I. pseudacorus seedlings were investigated. The results showed that under Cd (160 µM) and Zn (800 µM) stress, plant growth was significantly inhibited and photosynthetic performance was affected. Cd+Zn200 (160 µM + 200 µM) reduced the levels of malondialdehyde, hydrogen peroxide, and non-protein thiols by 31.29%, 53.20%, and 13.29%, respectively, in the aboveground tissues compared with levels in the single Cd treatment. However, Cd+Zn800 (160 µM + 800 µM) had no effect. Cd and Zn800 inhibited the absorption of mineral elements, while Zn200 had little effect on plants. Compared with that for Cd treatment alone, Cd + Zn200 and Cd+Zn800 reduced the Cd content in aboveground tissues by 54.15% and 49.92%, respectively, but had no significant effect on Cd in the root system. Zn significantly reduced the Cd content in subcellular components and limited the content and proportion of Cd extracted using water and ethanol. These results suggest that a low supply of Zn reduces Cd accumulation in aboveground tissues by promoting antioxidant substances and heavy metal chelating agents, thus protecting the photosynthetic systems. The addition of Zn also reduced the mobility and bioavailability of Cd to alleviate its toxicity in I. pseudacorus.


Subject(s)
Iris Plant , Metals, Heavy , Soil Pollutants , Cadmium/toxicity , Cadmium/analysis , Zinc/toxicity , Plant Development , Soil Pollutants/toxicity
5.
Sci Rep ; 14(1): 8418, 2024 04 10.
Article in English | MEDLINE | ID: mdl-38600062

ABSTRACT

Accumulation of bioavailable heavy metals in aquatic environment poses a serious threat to marine communities and human health due to possible trophic transfers through the food chain of toxic, non-degradable, exogenous pollutants. Copper (Cu) is one of the most spread heavy metals in water, and can severely affect primary producers at high doses. Here we show a novel imaging test to assay the dose-dependent effects of Cu on live microalgae identifying stress conditions when they are still capable of sustaining a positive growth. The method relies on Fourier Ptychographic Microscopy (FPM), capable to image large field of view in label-free phase-contrast mode attaining submicron lateral resolution. We uniquely combine FPM with a new multi-scale analysis method based on fractal geometry. The system is able to provide ensemble measurements of thousands of diatoms in the liquid sample simultaneously, while ensuring at same time single-cell imaging and analysis for each diatom. Through new image descriptors, we demonstrate that fractal analysis is suitable for handling the complexity and informative power of such multiscale FPM modality. We successfully tested this new approach by measuring how different concentrations of Cu impact on Skeletonema pseudocostatum diatom populations isolated from the Sarno River mouth.


Subject(s)
Diatoms , Metals, Heavy , Humans , Copper/pharmacology , Microscopy , Fractals , Metals, Heavy/pharmacology
6.
Curr Microbiol ; 81(6): 148, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642082

ABSTRACT

The menace caused by antibiotic resistance in bacteria is acknowledged on a global scale. Concerns over the same are increasing because of the selection pressure exerted by a huge number of different antimicrobial agents, including heavy metals. Heavy metals are non-metabolizable and recalcitrant to degradation, therefore the bacteria can expel the pollutants out of the system and make it less harmful via different mechanisms. The selection of antibiotic-resistant bacteria may be influenced by heavy metals present in environmental reservoirs. Through co-resistance and cross-resistance processes, the presence of heavy metals in the environment can act as co-selecting agents, hence increasing resistance to both heavy metals and antibiotics. The horizontal gene transfer or mutation assists in the selection of mutant bacteria resistant to the polluted environment. Hence, bioremediation and biodegradation are sustainable methods for the natural clean-up of pollutants. This review sheds light on the occurrence of metal and antibiotic resistance in the environment via the co-resistance and cross-resistance mechanisms underpinning co-selection emphasizing the dearth of studies that specifically examine the method of co-selection in clinical settings. Furthermore, it is advised that future research incorporate both culture- and molecular-based methodologies to further our comprehension of the mechanisms underlying bacterial co- and cross-resistance to antibiotics and heavy metals.


Subject(s)
Environmental Pollutants , Metals, Heavy , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Bacteria/genetics
7.
Environ Monit Assess ; 196(5): 461, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642157

ABSTRACT

Heavy metal pollution is an enduring environmental challenge that calls for sustainable and eco-friendly solutions. One promising approach is to harness discarded plant biomass as a highly efficient environmental friendly adsorbents. In this context, a noteworthy study has spotlighted the employment of Euryale ferox Salisbury seed coat (E.feroxSC) for the exclusion of trivalent and hexavalent chromium ions. This study aims to transform discarded plant residue into a novel, environmentally friendly, and cost-effective alternative adsorbent, offering a compelling alternative to more expensive adsorption methods. By repurposing natural materials, we can contribute to mitigating heavy-metal pollution while promoting sustainable and economically viable solutions in environmental remediation. The effect of different parameters, i.e., chromium ions' initial concentration (5-25 mg L-1), solution pH (2-7), adsorbent dosage (0.2-2.4 g L-1), contact time (20-240 min), and temperature (298-313 K), were investigated. E.feroxSC proved highly effective, achieving 96.5% removal of Cr(III) ions at pH 6 and 97.7% removal of Cr(VI) ions at pH 2, with a maximum biosorption capacity of 18.33 mg/g for Cr(III) and 13.64 mg/g for Cr(VI), making it a promising, eco-friendly adsorbent for tackling heavy-metal pollution. The adsorption process followed the pseudo-second-order kinetic model, aligning well with the Langmuir isotherm, exhibited favorable thermodynamics, and was characterized as feasible, spontaneous, and endothermic with physisorption mechanisms. The investigation revealed that E.feroxSC effectively adsorbed Cr(VI) which could be rejuvenated in a basic solution with minimal depletion in its adsorption capacity. Conversely, E.feroxSC's adsorption of Cr(III) demanded rejuvenation in an acidic milieu, exhibiting comparatively less efficient restoration.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration , Environmental Monitoring , Chromium/analysis , Water , Thermodynamics , Kinetics , Adsorption
8.
Mol Biol Rep ; 51(1): 543, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642191

ABSTRACT

Heavy metal stress is a major problem in present scenario and the consequences are well known. The agroecosystems are heavily affected by the heavy metal stress and the question arises on the sustainability of the agricultural products. Heavy metals inhibit the process to influence the reactive oxygen species production. When abundantly present copper metal ion has toxic effects which is mitigated by the exogenous application of Si. The role of silicon is to enhance physical parameters as well as gas exchange parameters. Si is likely to increase antioxidant enzymes in response to copper stress which can relocate toxic metals at subcellular level and remove heavy metals from the cell. Silicon regulates phytohormones when excess copper is present. Rate of photosynthesis and mineral absorption is increased in response to metal stress. Silicon manages enzymatic and non-enzymatic activities to balance metal stress condition. Cu transport by the plasma membrane is controlled by a family of proteins called copper transporter present at cell surface. Plants maintain balance in absorption, use and storage for proper copper ion homeostasis. Copper chaperones play vital role in copper ion movement within cells. Prior to that metallochaperones control Cu levels. The genes responsible in copper stress mitigation are discovered in various plant species and their function are decoded. However, detailed molecular mechanism is yet to be studied. This review discusses about the crucial mechanisms of Si-mediated alleviation of copper stress, the role of copper binding proteins in copper homeostasis. Moreover, it also provides a brief information on the genes, their function and regulation of their expression in relevance to Cu abundance in different plant species which will be beneficial for further understanding of the role of silicon in stabilization of copper stress.


Subject(s)
Copper , Metals, Heavy , Copper/metabolism , Silicon/pharmacology , Silicon/metabolism , Metals, Heavy/metabolism , Antioxidants/metabolism , Plants/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Dietary Supplements
9.
Ecotoxicology ; 33(3): 239-252, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38573560

ABSTRACT

Despite the prevalence of discharge of large volumes of heavy-metal-bearing seawater from coal-fired power plants into adjacent seas, studies on the associated ecological risks remain limited. This study continuously monitored concentrations of seven heavy metals (i.e. As, Cd, Cr, Cu, Hg, Pb, and Zn) in surface seawater near the outfall of a coal-fired power plant in Qingdao, China over three years. The results showed average concentrations of As, Cd, Cr, Cu, Hg, Pb, and Zn of 2.63, 0.33, 2.97, 4.63, 0.008, 0.85, and 25.00 µg/L, respectively. Given the lack of data on metal toxicity to local species, this study investigated species composition and biomass near discharge outfalls and constructed species sensitivity distribution (SSD) curves with biological flora characteristics. Hazardous concentrations for 5% of species (HC5) for As, Cd, Cr, Cu, Hg, Pb, and Zn derived from SSDs constructed from chronic toxicity data for native species were 3.23, 2.22, 0.06, 2.83, 0.66, 4.70, and 11.07 µg/L, respectively. This study further assessed ecological risk of heavy metals by applying the Hazard Quotient (HQ) and Joint Probability Curve (JPC) based on long-term heavy metal exposure data and chronic toxicity data for local species. The results revealed acceptable levels of ecological risk for As, Cd, Hg, and Pb, but unacceptable levels for Cr, Cu, and Zn. The order of studied heavy metals in terms of ecological risk was Cr > Cu ≈ Zn > As > Cd ≈ Pb > Hg. The results of this study can guide the assessment of ecological risk at heavy metal contaminated sites characterized by relatively low heavy metal concentrations and high discharge volumes, such as receiving waters of coal-fired power plant effluents.


Subject(s)
Mercury , Metals, Heavy , Soil Pollutants , Environmental Monitoring/methods , Cadmium , Lead , Metals, Heavy/toxicity , Seawater , Risk Assessment , Power Plants , China , Coal , Soil , Soil Pollutants/analysis
10.
J Environ Manage ; 357: 120825, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38579472

ABSTRACT

Alkali-activation is an effective municipal solid waste incineration fly ash (MSWIFA) solidification/stabilization (S/S) technology. However, the characteristics of calcium-rich silica-poor aluminum phase in MSWIFA easily cause the structural instability and contamination of alkali activated MSWIFA S/S bodies. Therefore, the aluminosilicate solid wastes are used in this work to optimize the immobilization and structural properties. Results showed that incorporation of aluminosilicate solid wastes significantly improved the compressive strength and heavy metals pollution toxicity of MSWIFA S/S bodies. Compared to alkali activated MSWIFA, the compressive strength of S/S bodies with addition of coal fly ash, silica fume and granulated blast furnace slag improved by 31.0%, 47.6% and 50.8% when the curing time was 28 days, respectively. Leachability of Pb, Zn and Cd in these alkali activated MSWIFA S/S bodies was far below the threshold value specified in Standard GB16889. Aluminosilicate solid wastes provided abundant Si/Al structural units, and some new phases such as ettringite(AFt, 3CaO⋅Al2O3⋅3CaSO4⋅32H2O), calcium sulfoaluminate hydrate (3CaO⋅Al2O3⋅CaSO4⋅12H2O) and Friedel's salt (CaO⋅Al2O3⋅CaCl2⋅10H2O) can be detected in S/S matrix with aluminosilicate solid wastes, along comes increased the amount of the amorphous phases. Lower Ca/Si molar ratio tended to form the network structure gel similar to tobermorite with higher polymerization degree. Meanwhile, the silica tetrahedron of the gels changed from the oligomerization state like island to the hyperomerization state like chain, layer network or three-dimensional structure, and average molecular chain length increased. These findings provide theoretical basis for structural properties optimization and resource utilization of MSWIFA S/S matrices.


Subject(s)
Aluminum Silicates , Metals, Heavy , Refuse Disposal , Coal Ash/chemistry , Solid Waste/analysis , Incineration/methods , Silicon Dioxide , Alkalies/chemistry , Metals, Heavy/analysis , Carbon/chemistry , Particulate Matter , Refuse Disposal/methods
11.
J Environ Manage ; 357: 120783, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38579475

ABSTRACT

The rapid development of the economy and society is causing an increase in the amount of municipal solid waste (MSW) produced by people's daily lives. With the strong support of the Chinese government, incineration power generation has steadily become the primary method of treating MSW, accounting for 79.86%. However, burning produces a significant amount of municipal solid waste incineration fly ash (MSWI-FA), which contains heavy metals, soluble chlorine salts, and dioxins. China's MSWI-FA yield increased by 8.23% annually to 7.80 million tons in 2022. Besides, the eastern region, especially the southeastern coastal region, has the highest yield of MSWI-FA. There are certain similarities in the chemical characteristics of MSWI-FA samples from Northeast, North, East, and South China. Zn and CaO have the largest amounts of metals and oxides, respectively. The Cl content is about 20 wt%. This study provides an overview of the techniques used in the thermal treatment method, solidification and stabilization, and separation and extraction of MSWI-FA and compares their benefits and drawbacks. In addition, the industrial applications and standard requirements of landfill treatment and resource utilization of MSWI-FA in China are analyzed. It is discovered that China's resource utilization of MSWI-FA is insufficient through the study on the fly ash disposal procedures at a few MSW incineration facilities located in the economically developed Guangdong Province and the traditional industrial city of Tianjin. Finally, the prospects for the disposal of MSWI-FA were discussed.


Subject(s)
Metals, Heavy , Refuse Disposal , Humans , Coal Ash/chemistry , Solid Waste/analysis , Particulate Matter/analysis , Carbon/analysis , Incineration , Metals, Heavy/analysis , China
12.
Sci Total Environ ; 926: 172128, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38565350

ABSTRACT

The threat of heavy metal (HM) pollution looms large over plant growth and human health, with tobacco emerging as a highly vulnerable plant due to its exceptional absorption capacity. The widespread cultivation of tobacco intensifies these concerns, posing increased risks to human health as HMs become more pervasive in tobacco-growing soils globally. The absorption of these metals not only impedes tobacco growth and quality but also amplifies health hazards through smoking. Implementing proactive strategies to minimize HM absorption in tobacco is of paramount importance. Various approaches, encompassing chemical immobilization, transgenic modification, agronomic adjustments, and microbial interventions, have proven effective in curbing HM accumulation and mitigating associated adverse effects. However, a comprehensive review elucidating these control strategies and their mechanisms remains notably absent. This paper seeks to fill this void by examining the deleterious effects of HM exposure on tobacco plants and human health through tobacco consumption. Additionally, it provides a thorough exploration of the mechanisms responsible for reducing HM content in tobacco. The review consolidates and synthesizes recent domestic and international initiatives aimed at mitigating HM content in tobacco, delivering a comprehensive overview of their current status, benefits, and limitations.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Tobacco , Metals, Heavy/analysis , Plants , Environmental Pollution/analysis , Soil/chemistry , Soil Pollutants/analysis
13.
Curr Microbiol ; 81(5): 136, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598029

ABSTRACT

Copper resistance in phytopathogens is a major challenge to crop production globally and is known to be driven by excessive use of copper-based pesticides. However, recent studies have shown co-selection of multiple heavy metal and antibiotic resistance genes in bacteria exposed to heavy metal and xenobiotics, which may impact the epidemiology of plant, animal, and human diseases. In this study, multi-resistance to heavy metals and antibiotics were evaluated in local Xanthomonas campestris pv. campestris (Xcc) and co-isolated Xanthomonas melonis (Xmel) strains from infected crucifer plants in Trinidad. Resistance to cobalt, cadmium, zinc, copper, and arsenic (V) was observed in both Xanthomonas species up to 25 mM. Heavy metal resistance (HMR) genes were found on a small plasmid-derived locus with ~ 90% similarity to a Stenotrophomonas spp. chromosomal locus and a X. perforans pLH3.1 plasmid. The co-occurrence of mobile elements in these regions implies their organization on a composite transposon-like structure. HMR genes in Xcc strains showed the lowest similarity to references, and the cus and ars operons appear to be unique among Xanthomonads. Overall, the similarity of HMR genes to Stenotrophomonas sp. chromosomal genomes suggest their origin in this genus or a related organism and subsequent spread through lateral gene transfer events. Further resistome characterization revealed the presence of small multidrug resistance (SMR), multidrug resistance (MDR) efflux pumps, and bla (Xcc) genes for broad biocide resistance in both species. Concurrently, resistance to antibiotics (streptomycin, kanamycin, tetracycline, chloramphenicol, and ampicillin) up to 1000 µg/mL was confirmed.


Subject(s)
Anti-Bacterial Agents , Metals, Heavy , Animals , Humans , Anti-Bacterial Agents/pharmacology , Copper , Metals, Heavy/toxicity , Ampicillin , Chloramphenicol
14.
Sci Rep ; 14(1): 7663, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561404

ABSTRACT

Heavy metal contamination is an urgent ecological governance problem in mining areas. In order to seek for a green and environmentally friendly reagent with better plant restoration effect to solve the problem of low efficiency in plant restoration in heavy metal pollution soil. In this study, we evaluated the effects of three biodegradable chelating agents, namely citric acid (CA), fulvic acid (FA) and polyaspartic acid (PASP), on the physicochemical properties of copper tailings, growth of ryegrass (Lolium perenne L.) and heavy metal accumulation therein. The results showed that the chelating agent application improved the physicochemical properties of copper tailings, increased the biomass of ryegrass and enriched more Cu and Cd in copper tailings. In the control group, the main existing forms of Cu and Cd were oxidizable state, followed by residual, weak acid soluble and reducible states. After the CA, FA or PASP application, Cu and Cd were converted from the residual and oxidizable states to the reducible and weak acid soluble states, whose bioavailability in copper tailings were thus enhanced. Besides, the chelating agent incorporation improved the Cu and Cd extraction efficiencies of ryegrass from copper tailings, as manifested by increased root and stem contents of Cu and Cd by 30.29-103.42%, 11.43-74.29%, 2.98-110.98% and 11.11-111.11%, respectively, in comparison with the control group. In the presence of multiple heavy metals, CA, FA or PASP showed selectivity regarding the ryegrass extraction of heavy metals from copper tailings. PCA analysis revealed that the CA-4 and PASP-7 treatment had great remediation potentials against Cu and Cd in copper tailings, respectively, as manifested by increases in Cu and Cd contents in ryegrass by 90.98% and 74.29% compared to the CK group.


Subject(s)
Lolium , Metals, Heavy , Soil Pollutants , Copper/metabolism , Cadmium/metabolism , Chelating Agents/pharmacology , Biodegradation, Environmental , Soil Pollutants/metabolism , Metals, Heavy/analysis , Acids/metabolism , Soil/chemistry
15.
Bull Environ Contam Toxicol ; 112(4): 57, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565676

ABSTRACT

Both livestock-manure and livestock-manure-derived biochar have been used to remediate heavy metal-contaminated soil. However, direct comparisons of the heavy metal stabilization efficiency of livestock-manure and EQC-manure-biochar (derived from an equal quantity of corresponding livestock-manure) are limited. In the present study, the effect of livestock-manures and EQC-manure-biochars on soil properties and heavy metal bioavailability and leachability were compared using two contrasting soils (Ferralsols and Fluvisols). The results showed that both the livestock-manures and EQC-manure-biochars significantly changed soil pH, available phosphorus, available potassium, alkaline nitrogen and organic matter content (p < 0.05), but the trends were variable. In Ferralsols, the DTPA-extractable Cd and Zn decreased by -0.38%~5.70% and - 3.79%~9.98% with livestock-manure application and by -7.99%~7.23% and - 5.67%~7.17% with EQC-manure-biochars application. In Fluvisols, the DTPA-extractable Cd and Zn decreased by 13.39%~17.41% and - 45.26%~14.24% with livestock-manure application and by 10.76%~16.90% and - 36.38%~16.37% with EQC-manure-biochar application. Furthermore, the change in TCLP-extractable Cd and Zn in both soils was similar to that of DTPA-extractable Cd and Zn. Notably, the Cd and Zn stabilization efficiency of the EQC-manure-biochars was no better than that of the corresponding livestock-manures. These results suggest that the use of livestock-manure-derived biochar is not cost-effective for the remediation of heavy metal-contaminated soil.


Subject(s)
Metals, Heavy , Soil Pollutants , Animals , Cadmium/chemistry , Zinc , Manure , Livestock , Soil Pollutants/analysis , Metals, Heavy/analysis , Charcoal/chemistry , Soil/chemistry , Pentetic Acid
16.
Environ Monit Assess ; 196(5): 414, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38565727

ABSTRACT

This study assessed the physicochemical properties of soils and their levels of heavy metal contents in soils along the Enyigba mining site in Ikwo, Ebonyi State, Nigeria. A total of 96 samples of soil were taken at depths of 0 to 20 cm using a soil auger and core sampler at a horizontal spacing of 100 m between each location and examined using standard laboratory techniques. The control soil samples were taken from the Alex Ekwueme Federal University Experimental and Research Farm in Ebonyi State, at a distance of 50 m from each spot at a depth of 0 to 20 cm. The results obtained from this study showed significant variations in the physicochemical properties and heavy metal levels of the soil from the Enyigba mining site, indicating that the mining activities have contaminated the soil. The result also indicated that mining operations may be responsible for the increase in sand and the decrease in silt and clay particles. The mining site's pH was typically low, indicating that the soil is naturally acidic. The contamination indices showed that lead recorded very high contamination factor of 27.068, while iron, nickel and zinc were low. The observed high concentration factor of lead had an impact on the soil's bulk density, saturated hydraulic conductivity, total porosity, calcium, potassium ion, magnesium ion, total nitrogen, organic carbon, cation exchange capacity, phosphorus and base saturation contents. It is recommended that the government's Ministry of Environment, at all levels, take a proactive stance in managing the excessive and subpar mining operations in the study area.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Soil/chemistry , Nigeria , Environmental Monitoring , Soil Pollutants/analysis , Metals, Heavy/analysis
17.
BMC Nephrol ; 25(1): 120, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570752

ABSTRACT

BACKGROUND: Chronic Kidney Disease of unknown cause (CKDu) a disease of exclusion, and remains unexplained in various parts of the world, including India. Previous studies have reported mixed findings about the role of heavy metals or agrochemicals in CKDu. These studies compared CKDu with healthy controls but lacked subjects with CKD as controls. The purpose of this study was to test the hypothesis whether heavy metals, i.e. Arsenic (As), Cadmium (Cd), Lead (Pb), and Chromium (Cr) are associated with CKDu, in central India. METHODS: The study was conducted in a case-control manner at a tertiary care hospital. CKDu cases (n = 60) were compared with CKD (n = 62) and healthy subjects (n = 54). Blood and urine levels of As, Cd, Pb, and Cr were measured by Inductively Coupled Plasma- Optical Emission Spectrometry. Pesticide use, painkillers, smoking, and alcohol addiction were also evaluated. The median blood and urine metal levels were compared among the groups by the Kruskal-Wallis rank sum test. RESULTS: CKDu had significantly higher pesticide and surface water usage as a source of drinking water. Blood As levels (median, IQR) were significantly higher in CKDu 91.97 (1.3-132.7) µg/L compared to CKD 4.5 (0.0-58.8) µg/L and healthy subjects 39.01 (4.8-67.4) µg/L (p < 0.001) On multinominal regression age and sex adjusted blood As was independently associated with CKDu[ OR 1.013 (95%CI 1.003-1.024) P < .05].Blood and urinary Cd, Pb, and Cr were higher in CKD compared to CKDu (p > .05). Urinary Cd, Pb and Cr were undetectable in healthy subjects and were significantly higher in CKDu and CKD compared to healthy subjects (P = < 0.001). There was a significant correlation of Cd, Pb and Cr in blood and urine with each other in CKDu and CKD subjects as compared to healthy subjects. Surface water use also associated with CKDu [OR 3.178 (95%CI 1.029-9.818) p < .05). CONCLUSION: The study showed an independent association of age and sex adjusted blood As with CKDu in this Indian cohort. Subjects with renal dysfunction (CKDu and CKD) were found to have significantly higher metal burden of Pb, Cd, As, and Cr as compared to healthy controls. CKDu subjects had significantly higher pesticide and surface water usage, which may be the source of differential As exposure in these subjects.


Subject(s)
Arsenic , Drinking Water , Metals, Heavy , Pesticides , Renal Insufficiency, Chronic , Humans , Cadmium/analysis , Case-Control Studies , Lead , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/etiology , Arsenic/analysis , Chromium
18.
Environ Monit Assess ; 196(5): 429, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38575685

ABSTRACT

Water, as an indispensable constituent of life, serves as the primary source of sustenance for all living things on Earth. The contamination of surface water with heavy metals poses a significant global health risk to humans, animals, and plants. Sharkiya Governorate, situated in the East Nile Delta region of Egypt, is particularly susceptible to surface water pollution due to various industrial, agricultural, and urban activities. The Bahr Mouse Stream, crucial for providing potable water and supporting irrigation activities in Sharkiya Governorate, caters to a population of approximately 7.7 million inhabitants. Unfortunately, this vital water source is exposed to many illegal encroachments that may cause pollution and deteriorate the water resource quality. In a comprehensive study conducted over two consecutive seasons (2019-2020), a total of 38 surface water samples were taken to assess the quantity of heavy metals in surface water destined for human consumption and other applications, supported by indices and statistics. The assessment utilized flame atomic absorption spectrophotometry to determine the concentration of key heavy metals including iron (Fe), manganese (Mn), cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn), nickel (Ni), cobalt (Co), and chromium (Cr). The calculated mean value of the Water Quality Index (WQI) was found to be 39.1 during the winter season and 28.05 during the summer season. This value suggests that the surface water maintains good quality and is suitable for drinking purposes. Furthermore, the analysis indicated that the concentrations of heavy metals in the study area were below the recommended limits set by the World Health Organization and fell within the safe threshold prescribed by Egyptian legislation. Despite the identification of localized instances of illegal activities in certain areas, such as unauthorized discharges, the findings affirm that the Bahr Mouse stream is devoid of heavy metal pollution. This underscores the importance of continued vigilance and regulatory enforcement to preserve the integrity of these vital water resources.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Humans , Animals , Mice , Egypt , Rivers , Environmental Monitoring , Metals, Heavy/analysis , Cadmium/analysis , Water Quality , Risk Assessment , Water Pollutants, Chemical/analysis
19.
Front Public Health ; 12: 1339755, 2024.
Article in English | MEDLINE | ID: mdl-38577275

ABSTRACT

Background: It has been reported that the disease-initiated and disease-mediated effects of aerosol pollutants can be related to concentration, site of deposition, duration of exposure, as well as the specific chemical composition of pollutants. Objectives: To investigate the microelemental composition of dust aggregates in primary schools of Vilnius and determine trace elements related to acute upper respiratory infections among 6-to 11-year-old children. Methods: Microelemental analysis of aerosol pollution was performed using dust samples collected in the classrooms of 11 primary schools in Vilnius from 2016 to 2020. Sites included areas of its natural accumulation behind the radiator heaters and from the surface of high cupboards. The concentrations of heavy metals (Pb, W, Sb, Sn, Zr, Zn, Cu, Ni, Mn, Cr, V, and As) in dust samples were analyzed using a SPECTRO XEPOS spectrometer. The annual incidence rates of respiratory diseases in children of each school were calculated based on data from medical records. Results: The mean annual incidence of physician-diagnosed acute upper respiratory infections (J00-J06 according to ICD-10A) among younger school-age children was between 25.1 and 71.3% per school. A significant correlation was found between vanadium concentration and the number of episodes of acute upper respiratory infections during each study year from 2016 to 2020. The lowest was r = 0.67 (p = 0.024), and the highest was r = 0.82 (p = 0.002). The concentration of vanadium in the samples of dust aggregates varied from 12.7 to 52.1 parts per million (ppm). No significant correlations between the other trace elements and the incidence of upper respiratory infections were found, which could be caused by a small number of study schools and relatively low concentrations of other heavy metals found in the samples of indoor dust aggregates. Conclusion: A significant and replicable correlation was found between the concentration of vanadium in the samples of natural dust aggregates collected in primary schools and the incidence of acute upper respiratory infections in children. Monitoring the concentration of heavy metals in the indoor environment can be an important instrument for the prevention and control of respiratory morbidity in children.


Subject(s)
Environmental Pollutants , Metals, Heavy , Respiratory Tract Infections , Trace Elements , Child , Humans , Dust/analysis , Vanadium/analysis , Incidence , Environmental Monitoring , Trace Elements/analysis , Respiratory Aerosols and Droplets , Metals, Heavy/analysis , Environmental Pollutants/analysis , Respiratory Tract Infections/epidemiology
20.
PeerJ ; 12: e17200, 2024.
Article in English | MEDLINE | ID: mdl-38577416

ABSTRACT

Background: Dayu County, a major tungsten producer in China, experiences severe heavy metal pollution. This study evaluated the pollution status, the accumulation characteristics in paddy rice, and the potential ecological risks of heavy metals in agricutural soils near tungsten mining areas of Dayu County. Furthermore, the impacts of soil properties on the accumulation of heavy metals in soil were explored. Methods: The geo-accumulation index (Igeo), the contamination factor (CF), and the pollution load index (PLI) were used to evaluate the pollution status of metals (As, Cd, Cu, Cr, Pb, Mo, W, and Zn) in soils. The ecological risk factor (RI) was used to assess the potential ecological risks of heavy metals in soil. The health risks and accumulation of heavy metals in paddy rice were evaluated using the health risk index and the translocation factor (TF), respectively. Pearson's correlation coefficient was used to discuss the influence of soil factors on heavy metal contents in soil. Results: The concentrations of metals exceeded the respective average background values for soils (As: 10.4, Cd: 0.10, Cu: 20.8, Cr: 48.0, Pb: 32.1, Mo: 0.30, W: 4.93, Zn: 69.0, mg/kg). The levels of As, Cd, Mo, and tungsten(W) exceeded the risk screening values for Chinese agricultural soil contamination and the Dutch standard. The mean concentrations of the eight tested heavy metals followed the order FJ-S > QL > FJ-N > HL > CJ-E > CJ-W, with a significant distribution throughout the Zhangjiang River basin. Heavy metals, especially Cd, were enriched in paddy rice. The Igeo and CF assessment indicated that the soil was moderately to heavily polluted by Mo, W and Cd, and the PLI assessment indicated the the sites of FJ-S and QL were extremely severely polluted due to the contribution of Cd, Mo and W. The RI results indicated that Cd posed the highest risk near tungsten mining areas. The non-carcinogenic and total carcinogenic risks were above the threshold values (non-carcinogenic risk by HQ > 1, carcinogenic risks by CR > 1 × 10-4 a-1) for As and Cd. Correlation analysis indicated that K2O, Na2O, and CaO are main factors affecting the accumulation and migration of heavy metals in soils and plants. Our findings reveal significant contamination of soils and crops with heavy metals, especially Cd, Mo, and W, near mining areas, highlighting serious health risks. This emphasizes the need for immediate remedial actions and the implementation of stringent environmental policies to safeguard health and the environment.


Subject(s)
Metals, Heavy , Oryza , Soil Pollutants , Soil , Tungsten/analysis , Cadmium/analysis , Lead/analysis , Environmental Monitoring , Risk Assessment , Soil Pollutants/analysis , Metals, Heavy/analysis , Mining , China
SELECTION OF CITATIONS
SEARCH DETAIL
...